Installer manual

01536
KNX activator with 4 analogue outputs

Contents

1. General 4
1.1 Using the product manual 4
1.1.1 Notes 5
1.2 Product and functional overview 4
2. Device technology 5
2.101536 analogue Actuator, 4-fold 5
2.1.1 Technical data 5
2.2 Connection diagram 7
2.3 Mounting and installation 8
2.4 Display elements 9
3. Commissioning 10
3.1 Overview 10
3.2 Parameters 10
3.2.1 Parameter window General 11
3.2.2 Parameter window A: General 14
3.2.3 Parameter window A: Characteristic 19
3.2.4 Parameter window A: Dimming 24
3.2.5 Parameter window A: Scenes 25
3.2.6 Parameter window A: Forced operation 26
3.3 Group objects 20
3.3.1 Summary of group objects 29
3.3.2 Input objects 31
3.3.3 Output objects 33
A. Appendix 36
A. 1 Scope of delivery 36
A. 2 Value table of group object Status byte channel A/B 37
A. 3 Value table of group object Status byte channel C/D 38

General

1. General

The Analogue Actuator converts telegrams received via KNX into analog output signals. These signals allow terminal devices in the heating, air-conditioning and ventilation technology or lighting technology to adapt their output variables using bus information and participate in control processes.

1.1 Using the product manual

This manual provides detailed technical information on the function, installation and programming of the KNX device. The application is explained using examples.
This manual is divided into the following chapters:

- Chapter 1 General
- Chapter 2 Device technology
- Chapter 3 Commissioning
- Chapter A Appendix

1.1.1 Notes

Notes and safety instructions are represented as follows in this manual:

| Note |
| :--- | :--- |
| Tips for usage and operation |

Examples

Application examples, installation examples, programming examples

Important

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

Attention

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

Danger

These safety instructions are used if there is a danger to life and limb with inappropriate use

. 今 Danger

These safety instructions are used if there is an extreme danger to life with inappropriate use.

1.2 Product and functional overview

The Analogue Actuator has four or two analog outputs, which can be defined as voltage or current outputs (not applicable to AA/A) and can be parameterized in one of the following formats using software. Outputs that are not required can be deactivated.
In the process, various signal outputs are pre-configured to react (respond) in a particular way.
Voltage signals:

Output	Reaction	Application
$0 \ldots .1 \mathrm{~V}$	No special reaction	Control signal, e.g. in HVAC
$0 \ldots .5 \mathrm{~V}$	No special reaction	Control signal
$0 \ldots 10 \mathrm{~V}$	No special reaction	Control signal; most frequently used control signal in HVAC
$1 \ldots 10 \mathrm{~V}$	Can be used to actuate ballasts of up to 1 mA	Control signal often used in lighting

Current signals (not applicable to AA/A):

Output	Reaction	Application
$0 \ldots 20 \mathrm{~mA}$	No special reaction	Control signal
$4 \ldots 20 \mathrm{~mA}$	No special reaction	Supply control signal for active parts

The output variables can be forcibly operated by a higher-level control system. In addition, specific processes can be predefined for the outputs using the function Characteristic. Each channel can be assigned up to 16 scenes.

[^0]
Device technology

2. Device technology

2.101536 analogue Actuator, 4-fold

The Analogue Actuator converts telegrams received via KNX into analog output signals. The device has four outputs. The analog outputs can be used independently of one another as current or voltage outputs with adjustable output signals.
The Analogue Actuator is a modular installation device for installation in the distribution board. It connects to the KNX via a bus connection terminal. The device requires an external 100... 240 V AC auxiliary voltage. The device is parameterized and programmed using ETS.

Supply	Auxiliary voltage	100... 240 V AC +10\%/-15\%, 50/60 Hz
	Power supply	Via KNX
	KNX current consumption	Max. 12 mA
	KNX power loss	Max. 250 mW
	Power loss P	0,8 W
Analog outputs	4, A...D	
	Voltage signals	$\begin{aligned} & 0 \ldots 1 \text { V DC } \\ & 0 \ldots .5 \text { V DC } \\ & 0 \ldots .10 \text { V DC } \\ & 1 . . .10 \text { V DC } \end{aligned}$
	Current signal	0... 20 mA DC 4... 20 mADC Depending on parameterization
	Output signal load	Voltage signal: $\geq 1 \mathrm{kOhm}$ Current signal: ≤ 500 ohm
	Dielectric strength	$\begin{aligned} & 24 \mathrm{~V} \text { AC } \\ & 34 \mathrm{~V} \text { DC } \end{aligned}$
Output current	Voltage signal	Max. 10 mA per channel
	For 1... 10 V output and ballasts	Max. 1 mA per channel
	Current signal	Max. 20 mA per channel
Operating and display elements	Programming button/LED (red)	For assignment of the physical address
	A...D status LED (yellow)	Channel A...D status display
	KNX status LED (green)	KNX status display
	Power LED (green)	Auxiliary voltage display
Connections	KNX connection	Bus connection terminal, screwless
	Analog outputs A...D	Screw terminals $0,2 \ldots 4,0 \mathrm{~mm}^{2}$ rigid/flexible with/without ferrules $0,2 \ldots 4,0 \mathrm{~mm}^{2}$ solid-core
	Tightening torque	Max. 0,6 Nm
Degree of protection	IP 20	To DIN EN 60529
Protection class	II	To DIN EN 61140
Isolation category	Overvoltage category	III to DIN EN 60 664-1
	Pollution degree	Il to DIN EN 60 664-1
KNX safety voltage	SELV 24 V DC	
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Storage	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
	Transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Ambient conditions	Maximum air humidity	93%, no condensation allowed
	Atmospheric pressure	Atmosphere up to 2,000 m
Design	Modular installation device (MDRC)	Modular installation device, Pro M
	Dimensions	$90 \times 70 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$
	Mounting width in space units	$4 \times 18 \mathrm{~mm}$ modules
	Mounting depth	70 mm
Mounting	On 35 mm mounting rail	To DIN EN 60715
Mounting position	Any	

Weight	0.17 kg	
Housing/color	Plastic housing, gray	Certification
Approvals	KNX to EN 50 090-1, -2	
CE mark	In accordance with the EMC guideline and low voltage guideline	

Device type	Application	Max. number of group objects	Max. number of group addresses	Max. number of assignments
01536	Analog output 4f/*	57	254	254

* ... = Current version number of the application. Please refer to the software information on our website for this purpose.

[^1]2.2 Connection diagram

1 Label carrier
2 Programming button
3 Programming LED (red)
4 Bus connection terminal
5 Power supply connection U_{s}
6 Analog output A
7 Channels A...D status LED (yellow)
8 Device status LED (green)

Device technology

2.3 Mounting and installation

IMPORTANT: The maximum distance of loads from the device is 100 m (use twisted pair cable to make the connection).
The 01536 is a modular installation device for quick installation in the distribution board on 35 mm mounting rails to DIN EN 60715.
The installation position can be selected as required.
It connects to the electrical supply using screw terminals and to the bus using the supplied bus connection terminal. The pin assignments are located on the housing.
The device is ready for operation once the auxiliary and bus voltages (for 01536) have been applied.
The device must be accessible for operation, testing, visual inspection, maintenance and repair in compliance with DIN VDE 0100-520.

Commissioning requirement

In order to commission the device, a PC with ETS, as well as a connection to the bus, e.g. via a KNX interface, is required.
The device is ready for operation after the bus voltage is applied. An auxiliary voltage is required

Important

- The maximum permissible current of a KNX line must not be exceeded.
- During planning and installation ensure that the KNX line is correctly dimensioned.
- The device has a maximum current draw of 12 mA .
- Do not feed the outputs with any external voltage. Connected components must be reliably isolated from other voltages.
- The 0 V terminals on the outputs are connected with each other internally.

Mounting and commissioning may be carried out only by electrical specialists. The applicable standards, directives, regulations and specifications for the country in question should be observed when planning and setting up electrical installations and security systems for intrusion and fire detection.

- Protect the device from damp, dirt and damage during transport, storage and operation.
- Only operate the device within the specified technical data!
- The device should only be operated in an enclosed housing (distribution board)!
- The voltage supply to the device must be switched off before mounting.

1. 4 Danger

All poles must be disconnected when expanding or modifying the electrical connections.

Supplied state

The device is supplied with the physical address 15.15.255. The application is pre-installed. Therefore, all that is necessary is to load group addresses and parameters during commissioning.
The complete application can be reloaded if required. Downloads may take longer after a change of application or a discharge.

Assignment of the physical address

The assignment and programming of the physical address are carried out in ETS.
The device features a Programming button for assignment of the physical address. The red Programming LED lights up after the button has been pressed. It goes off as soon as ETS has assigned the physical address or the Programming button is pressed again.

Download response

Depending on the PC that is used, the progress bar for the download may take up to one and a half minutes to appear, due to the complexity of the device.

Cleaning

The voltage supply to the device must be switched off before cleaning. If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Do not use corrosive agents or solutions.

Maintenance

The device is maintenance-free. In the event of damage (e.g. during transport and/or storage), do not carry out any repairs.

2.4 Display elements

Indicator LEDs are located on the front of the device.
The response of the display elements is described in the following table:

LED	Function	Description
Programming button	Press	Assignment of the physical address
Programming LED	ON	The LED comes on when the Programming button is pressed, in order to assign a physical address to the bus subscriber.
	OFF	The LED does not come on unless the Programming button is pressed.
A...D status LED	ON	Channel output signal not 0
	OFF	Channel output signal is 0 or output is deactivated
	FLASHING	Channel output fault: e.g. current mode: load too high (idling) or voltage mode: load too low (short circuit) or output stays active and LED flashes if control variable is not reached
KNX status LED	ON	KNX voltage on, device ok
	OFF	Bus voltage failure
Power LED	ON	Auxiliary voltage present
	OFF	Auxiliary voltage not present

[^2]This requires the KNX voltage to be on and the application to be running.

Commissioning

3. Commissioning

The Analogue Actuator is used to convert physical values (2 bytes, 4 bytes) or relative values (1 byte) into analog voltages ($0 . . .1 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0 . .10 \mathrm{~V}, 1 \ldots 10 \mathrm{~V}$) or currents ($0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$). This enables HVAC components such as ventilation flap or other device actuators to be integrated into the KNX system.
The parameter Type of output can be used separately to select the required voltage or current signal. Activating an output launches a display of additional parameters and group objects in ETS. Active outputs have a group object Input value, a group object Status Actual value and other group objects depending on the output parameters.
The required input format ($1 . .4$ bytes) and how the output reacts to a reset, bus voltage recovery, etc., can be specified for each active output.
There are other parameters that enable the use of forced operation objects to raise actuation priority, monitor input objects for a period of time, and set a dimming function.

3.1 Overview

HVAC applications

The Analogue Actuator is suitable for actuating ventilation flaps, vents and frequency converters in HVAC applications.
A $0 . . .10 \mathrm{~V}$ signal is normally used as a control variable for this (corresponding to, e.g., $0 . . .100 \%$).
This control signal can be used to open or close valves or flaps by activating a motor or frequency converter that moves the valve or flap in the relevant direction.
It can also be used to specify setpoints via the $0 . . .10 \mathrm{~V}$ output, for example to set the target temperature for a boiler.
Example: Possible temperature range $30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$; here, a 5 V signal would correspond to an output temperature of $55^{\circ} \mathrm{C}$.
The application allows you to create a characteristic, which means that the system can also control complex variables such as those for 6-way valves (attention, the Analogue Actuator has only one control value input!) or valves with an operating range of $2 . .10 \mathrm{~V}$.

Lighting applications

An Analogue Actuator, especially the $0 . . .10 \mathrm{~V}$ interface, can also be used as a control signal for a lighting circuit (e.g. LED), to control brightness or lamp/LED color. When the actuator is used as a $1 . . .10 \mathrm{~V}$ output it can also actuate ballasts of up to 4 mA (per output).

3.2 Parameters

The ETS Engineering Tool Software is used to parameterize the device.
In ETS, the application is located in the Catalogs window under Manufacturers/ABB/Output/Analog Output.
The following chapters describe the device parameters using the parameter windows. Parameter windows are structured dynamically so that further parameters may be enabled depending on the parameterization and the function.
The default values of the parameters are underlined, e.g.:
Opzioni: Yes
No.

Note

The device has several channels. However, as the functions for all the channels are identical, all the descriptive examples show the functions for Channel A .

Commissioning

3.2.1 Parameter window General

Higher-level parameters can be set in the parameter window General.

Send., swi. delay after volt. recov., download and ETS reset in s [2...255]
Options: 2... 255
During the sending and switching delay, telegrams are only received. However, the telegrams are not processed and the outputs remain unchanged. No telegrams are sent on the bus.
After the sending and switching delay time, telegrams are sent and the state of the outputs is set to correspond to the parameterization or the group object values.
If group objects are read out via the bus during the sending and switching delay, e.g. by a visual display system, these requests are stored and a response is sent once the delay time has expired.
An initialization time of about two seconds is included in the delay time. The initialization time is the time that the processor requires before it is ready to function.

How does the device react on bus voltage recovery?
After bus voltage recovery, the device always waits for the sending and switching delay time to expire before sending telegrams on the bus.

State after expiration of sending and switching delay

Options: Last value received Ignore received values

- Last value received: During the sending and switching delay, the inputs and outputs continue reading. They send the current value after the delay has expired.
- Ignore received values: No new values are accepted during the sending and switching delay. The first value received continues to apply.

Commissioning

Limit number of telegrams

Options: No
Yes
This parameter limits the device-generated bus load. This limit relates to all telegrams sent by the device.
Selection of Yes option:
Dependent parameters:
Max. number of telegrams [1...255]
Options: 1...20... 255

In period

Options: $\quad 50 / 100 / 200 / 500 \mathrm{~ms} . . .1 / 2 / 5 / 10 / 30 \mathrm{~s} . . .1$ min
This parameter defines the number of telegrams sent by the device within a period. The telegrams are sent as quickly as possible at the start of a period.

Note

The device counts the number of telegrams sent within the parameterized period. As soon as the maximum number of sent telegrams is reached, no further telegrams are sent on the KNX until the end of the period. A new period commences at the end of the previous period. The telegram counter is reset to zero, and sending of telegrams is allowed again. The current group object value at the time of sending is always sent.
The first period (break time) is not predefined exactly. It can be between zero seconds and the parameterized time. The subsequent sending times correspond to the parameterized time.

Example:

Maximum number of sent telegrams $=5$, period $=5 \mathrm{~s} .20$ telegrams are ready to send. The device immediately sends 5 telegrams. The next 5 telegrams are sent after a maximum of 5 seconds. From this point, a further 5 telegrams are sent on the KNX every 5 seconds.

Enable group object

"In operation", 1 bit
Options: Yes
№
Linked group object: In operation

- Yes: The group object is enabled
- No: The group object is not enabled.

Selection of Yes option:
Dependent parameters:
Send
Options: Value 0
Value 1

Sending cycle time

in s [1...65.535]
Options: 1...60... 65.535
The time interval at which the group object In operation cyclically sends a telegram is set here.

Note
After bus voltage recovery, the group object sends its value after the set sending and switching delay time.

Enable group object

"Request status values" 1 bit
Options: Yes
No
Linked group object: Request status values
This parameter enables a group object that can trigger sending for all device and channel status objects with a single 1-bit group object. The request can be made via object value 0,1 or 0 or 1 .
All status messages can be requested using this group object, provided the parameter Send status values is set to After a change or request in Parameter window A: General, p. 26.

Commissioning

- Yes: The group object is enabled
- No: The group object is not enabled.

Selection of Yes option:
Dependent parameters:

Request with object value

Options: 0

$$
\frac{1}{0} \text { or } 1
$$

- 0 : Sending status messages is requested with the value 0 .
- 1: Sending status messages is requested with the value 1.
- 0 or 1 : Sending status messages is requested with the values 0 or 1 .

Enable group object

"Status Auxiliary voltage" 1 bit
Options: Yes
No
Linked group object: Status Auxiliary voltage
The group object indicates whether the auxiliary voltage (supply voltage) is present. If it fails, all outputs are deactivated but bus communication remains operational.

Note
 If the auxiliary voltage fails, the group object sends the value 0 .

- Yes:: The group object is enabled.
- No: The group object is not enabled.

Enable group object

"Status byte device" 2×8 bits
Options: Yes
№
Linked group object: Status byte channel A/B
Status byte channel C/D
This parameter enables two group objects that compile the device status in two bytes. The bytes are broken down in such a way that four bits always indicate the status of a channel. The statuses displayed are Normal status, Forced operation active, Cyclical monitoring active and Fault at output. Fault at output depends upon whether there is too high or too low (voltage) a load in current or voltage mode, respectively.

- Yes: The group object is enabled.
- No: The group object is not enabled.

The table below shows the status breakdown:

		Channel A				Channel B		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Status
0	0	0	0	0	0	0	0	Normal status
1	0	0	0	0	0	0	0	Not assigned
0	1	0	0	0	0	0	0	Not assigned
0	0	1	0	0	0	0	0	Forced operation active on channel A
0	0	0	1	0	0	0	0	Cyclical monitoring active on channel A
0	0	0	0	1	0	0	0	Fault at output on channel A
0	0	0	0	0	1	0	0	Forced operation active on channel B
0	0	0	0	0	0	1	0	Cyclical monitoring active on channel B
0	0	0	0	0	0	0	1	Fault at output on channel B

All bits $=0$: The output has no particular status
For further information see:: Value table of group object Status byte channel A/B, p. 37

Commissioning

3.2.2 Parameter window A: General

This parameter window is used to define the general settings for a channel.

Note

The device has several channels. However, as the functions for all the channels are identical, all the descriptive examples show the functions for Channel A..

Type of output

[^3]
Commissioning

Input format

Options: 1 byte [0...255] DPT 5.005
1 byte [0...100] \% DPT 5.001
1 byte [-128...127] DPT 6.010
2 bytes [0...65,535] DPT 7.001
2 bytes [-32,768...32,767] DPT 8.001
2 bytes (floating point) DPT 9.0XX
4 bytes (IEEE float. point) DPT 14.0XX

Linked group object: Status Actual value
This parameter defines the input format. The available input range varies depending on the input format.

Create own characteristic

Options: Yes
No

- Yes: This opens a new parameter window, A: Characteristic, in which it is possible to specify a particular output progression based on the input signal by using a specific number of support points.
- No: No own characteristic specified.

Selection of Yes option:
Dependent parameters:

Parameterize supports and limits on the page "Characteristic"
For further information on setting the parameters, see Parameter window A: Characteristic, p. 19

Definition of the output range:

Note
The options available for input values depend on the selection made in the parameter Input format.

Input value for 0\% output value

Options: 0... 100 \%
0... 255
-128... 127
0... 65.535
-32.768... 32.767
-1.000...1.000
-1.000...1.000
Linked group object: Input value
The lower limit is assigned here based on the selected input format. If the function Create own characteristic has been selected, this parameter does not appear.

Input value for 100\% output value

Options: 0... 100 \%
0... 255
-128... 127
0... 65.535
-32.768...32.767
-1.000...1.000
$-1.000 . . .1 .000$
Linked group object: Input value
The upper limit is assigned here based on the selected input format. If the function Create own characteristic has been selected, this parameter does not appear.

Commissioning

Enable function Dimming

Options: Yes
No

Linked group object: Switch
Dimming
Status Switch

- Yes: This opens a new parameter window, A: Dimming.
- No: The function is not available.

For further information on setting the parameters, see Parameter window A: Dimming, p. 24.

Enable function 8-bit scene

Options: Yes
No
Linked group object: 8-bit scene
Activating this parameter allows you to assign scenes to specific output values.

- Yes: This opens a new parameter window, A: Scenes.
- No: The function is not available.

For further information on setting the parameters, see Parameter window A: Scenes, p. 25.

Enable function Forced operation

Options: Yes
No
Activating this parameter allows you to create two forced operations.

- Yes: This opens a new parameter window, A: Forced operation.
- No: The function is not available.

For further information on setting the parameters, see Parameter window A: Forced operation, p. 26.

Activate cyclical monitoring

Options: No
Object Input value
Object Forced operation
Object Input value and object Forced operation
Linked group object: Alarm
This parameter enables you to monitor one or both objects when they receive a value, to detect failure on the device sending the value. If the monitoring time is exceeded, an Alarm object is sent on the bus. In addition, there is a predefined output value that is activated if the time is exceeded.

- No: No monitoring takes place.
- Object Input value: The system monitors whether the group object Input value has received a value within the defined time.
- Object Forced operation: The system monitors whether one of the group objects Forced operation has received a value within the defined time.
- Object Input value and object Forced operation: The system monitors whether one of the group objects Forced operation or a group object Input value has received a value within the defined time.

Note

In case of an alarm, the object is sent with value 1.

Dependent parameters:

Time interval for cyclical
monitoring in s [1...65,535]
Options: 1...180...65.635
This parameter defines the time within which a new signal must be received. When it expires, the Alarm object is automatically sent,

Output after exceeding the
monitoring time in \% [0...100]
Options: \quad … 100
This parameter defines the output value that applies if the monitoring time is exceeded.

Note

If you choose to use cyclical monitoring for the group object Forced operation, this object must also be activated and parameterized, otherwise monitoring will switch on and you will not be able to switch it off.

Note

If forced operation is active and cyclical monitoring is triggered, the output value does not change. Forced operation always takes priority.

Reaction on bus voltage failure
 or ETS programming

Options: Retain current output value
Adopt user-defined output value
This parameter defines how the output reacts to a bus voltage failure or ETS programming.

- Retain current output value: The current output value is retained
- Adopt user-defined output value: A user-defined value may be entered.

Selection of the option Adopt user-defined output value:
Dependent parameters:

Output in \% [0...100]
Options: 0... 100
This parameter specifies the output value that applies during a bus voltage failure or ETS programming.
The value for this is entered directly as a percentage of the output type, e.g. $0 . .10 \mathrm{~V}$.

Note

```
After ETS programming (device download) the device starts with the lowest output value. If the function Characteristic is activated, the system takes into account the parameterized values for this.
Example:
\(\bullet 0 . .10 \mathrm{~V}\) output: The start value after download is 0 V
- 4... 20 mA output: The start value after download is 4 mA
- Characteristic limited to \(3 \ldots 10 \mathrm{~V}\) : The start value after download is 3 V
The value used is always the one assigned to the smallest input value.
Example
- The characteristic assigns an output value of 10 V to the input value \(0 \%\) and an output value of 0 V to the input value \(100 \%\). In this scenario, the device will start at 10 V after the download.
```


Reaction on bus voltage recovery

Options: As before bus voltage failure Adopt user-defined output value

This parameter determines how the output reacts after bus voltage recovery.

- As before bus voltage failure: the value before the bus voltage failure continues to apply.
- Adopt user-defined output value: A user-defined value may be entered..

Commissioning

Selection of the option Adopt user-defined output value:
Dependent parameters:

Output in \% [0...100]
Options: $\underline{0} . . .100$
This parameter specifies the output value that applies after bus voltage recovery.

```
Attention
The value set here is affected by the characteristic!
If the characteristic defines the highest and lowest possible input values, the output range that can be actuated will be limited.
Example:
- 2-byte input format [DPT 9.0xx]; the characteristic is defined as 0 = 0 V and 1,000 = 10 V .
This results in the following assignment:
0% = 0 V
50% = 0 V
51% = 0,2 V
75% = 5 V
100% = 10 V
See also the example in 3.2.3 Parameter window A: Characteristic, p. 19
```


Object value request on new start and

 bus voltage recoveryOptions: Yes
No
This parameter defines whether an object value request (Value Read) is sent on the bus after a device restart and after bus voltage recovery.
The request includes the channel's group objects Input value and Switch.

Send status values

Options: No, update only
On change
After a change or request
Cyclically and on change

- No, update only: The status is updated but not sent.
- On change: The status is sent when a change occurs
- After a change or request: The status is sent when a change or request occurs.
- Cyclically and on change: The status is sent cyclically and when a change occurs.

Selection of option Cyclically and on change:
Dependent parameters:

Sending cycle time
in s [1...65,535]
Options: 1...600...65.535

This parameter allows all status values connected with the channel to be sent cyclically within the set time range.
The group objects sent are Voltage/Current output value, Status Actual value, Status Switch and Fault at output.

[^4]
Commissioning

3.2.3 Parameter window A: Characteristic

This parameter window is shown if the corresponding function was enabled in Parameter window A: General, p. 14.
Using the function Characteristic you can specify a particular reaction for each output by setting up your own characteristic. You can enter between 2 and 11 support points for this. Each support point assigns a specific output value to an input value. The reaction between these values will be linear. Along with the characteristic you can also prescribe a minimum or maximum output value limit by parameterizing the minimum and maximum values of the characteristic accordingly.

General

4 Channel A

A: General

A: Characteristic
D Channel B
D Channel C

1. Channel D

No of support points
Attention! Observe selected input format!

Charact. affects device scene and voltage recovery reaction. Check manual.

Input values must be specified in ascending order.

Support 1 input value,
value between [0...255]

Support 1 output value,
value in mV [0...10,000]

Support 2 input value,
0
value between [0...255]
Support 2 output value,
value in mV [$0 \ldots 10,000$]

2

Example:
Values before sorting:

Value	Input value	Output value [V]
1	10%	1
2	30%	3
3	40%	1
4	20%	3,5
5	60%	3,5
6	50%	3
7	90%	1,75
8	80%	2,5
9	70%	3

Values after sorting:

Value	Input value	Output value [V]
1	10%	1
2	20%	3,5
3	30%	3
4	40%	1
5	50%	3
6	60%	3,5
7	70%	3
8	80%	2,5
9	90%	1,75

The input and output values available depend on the input format selected in Parameter window A: General, p. 14.

Note

Using a characteristic to set limits can result in differences between the values entered and the values output.
For example, if you enter 95% as an input value, the system will reset it to the nearest valid value ($90 \% ; 1.75 \mathrm{~V}$). As the output value 1.75 V appears four times, the lowest value is adopted as the return value (group object Status Actual value), in this case 13%, and written to the output object.

Support X input value,

value between [0...100] \%
value between [0...255]
value between [-128...127]
value between [0...65,535]
value between $[-32,768 \ldots 32,767]$
value between [-1,000...1,000]

Options:
0... 100 \%

ㅇ... 255
-128... 127
0...65.535
$-32,768 \ldots 32,767$
-1,000...1.000
-1,000...1.000
Linked group object: Input value
This parameter is used to enter the input value assigned to support point $X(X=1 . . .11)$ depending on the selected input format (Parameter window A: General, p. 14).

```
Support X output value,
value in mV [0...100] \%
value in mV [0...1,000]
value in \(\mathrm{mV}[0 . .10,000\) ]
value in \(\mathrm{mV}[1,000 \ldots . .10,000]\)
value in mV [ \(0 . . .5,000\) ]
value in \(\mu \mathrm{A}[0 \ldots 20,000\) ]
value in \(\mu \mathrm{A}[4,000 \ldots 20,000]\)
```

Options:
ㅇ... 100 \%

- $\quad . .1,000$

O-...10,000
1,000...10,000
0...5,000
…20,000
4,000...20,000
Linked group object: Status Actual value
This parameter is used to enter the output value assigned to support point $X(X=1 \ldots .11)$ depending on the selected output type (Parameter window A: General, p. 14).

[^5]
Commissioning

The example below shows how a characteristic is used to limit the input range.
The screenshots show the settings selected in order to do this.
Settings in Parameter window A: General:

General	
Channel A	
A: General A: Characteristic Channel B Channel C Channel D	Type of output

Settings in Parameter window A: Characteristic:

[^6]Commissioning

The table below shows an example with the different input formats for output type $0 . . .10 \mathrm{~V}$, with those values highlighted in orange that will change the output value.

Input value [\%]	Input format							Voltage
	DPT 5.001	DPT 5.005	DPT 6.010	DPT 7.001	DPT 8.001	DPT 9.0xx	DPT 14.0xx	
0%	0	0	-128	0	$-32,768$	-1000.00	$-1,000.0000$	0
50%	50	128	0	32,768	0	0.00	0	0
60%	60	153	25	39,321	6,553	200,00	200,0000	10
100%	100	255	127	65,535	32,767	1000.00	$1,000.0000$	10

The example below is for DPT 9.0xx.

The assignment is as follows:

Input value [\%]	0	\ldots	25	\ldots	50	\ldots	55	\ldots	60	\ldots	75	\ldots	100
Input value [DPT]	-1000	\ldots	-500	\ldots	0	\ldots	100	\ldots	200	\ldots	500	\ldots	1000
Resulting output value [V]	0	0	0	0	0	\ldots	5	\ldots	10	10	10	10	10
Resulting output value [V] inverted characteristic	10	10	10	10	10	\ldots	5	\ldots	0	0	0	0	0

The table shows the reaction of the output with the above characteristic, depending on the input values entered (via group object) or set (via parameters). The valid value range that may be used with the functions Scene and Reaction on bus voltage recovery is highlighted in orange.

Commissioning

3.2.4 Parameter window A: Dimming

This parameter window is shown if the corresponding function was enabled in Parameter window A: General, p. 14.
The function Dimming enables you to use additional options that are primarily used to dim output voltages. To set these additional options, use the parameters below.
If the function Characteristic is in use at the same time, certain values are also dimmed by means of the parameterized characteristic.
In addition, when the function Dimming is in use, it activates the 4-bit input group object Dimming and the 1-bit input group object Switch plus the 1-bit output group object Status Switch.

General	
Channel A	
A: General	Rel. dimming speed for [0...100\%] and input value in $s[0 \ldots 255]$
A: Dimming Channel B Channel C Channel D	Switch on at
Dimming speed for [0...100\%] while	
switching in $s[0 . .255]$	

Rel. dimming speed for [0...100] and input value in s [0...255]
Options: 0... $5 . . .255$
The value selected indicates the dimming speed required to dim from 0 to 100%. If dimming between other values, the duration is calculated based on this value.

Note

The dimming range can be limited only absolutely using the characteristics, whereby the upper and lower limits serve as the upper and lower dimming limits.

Note

The lower dimming limit should be set to a value at which the lamps can still be operated. Some lamps switch off or start to flicker at a value below around 10% (please observe the manufacturer's technical data).

Switch on at

Options: User-defined value
Last output value

This parameter allows you to choose a switch-on value of between $0 . . .100 \%$ or to switch back on at the last output value before switching off. In order to switch on, the group object that switches the load (e.g. via Switch Actuator SA/S) is also linked to the group object Switch for the associated Analogue Actuator channel. Alternatively, the switch actuator status response (Status Switch) can be linked with the input object Switch of the Analogue Actuator. Or in reverse order, the group object Status Switch of the Analogue Actuator can be linked with the group object Switch of the Switch Actuator.

Selection of the option User-defined value::
Dependent parameters:

User-defined value

in defined input range in \% [0...100]
Options: 0...80... 100
This can be entered in 1% increments.

[^7]Dimming speed for [0...100\%] while
switching in s [0...255]
Options: O... 100
The value selected indicates the speed required to switch the lamp from 0 to 100%. If switching between other values, the duration is calculated based on this value.

Note

The group object Status Switch will change the status from "Off" to "On" if the input value is higher than the smallest defined input value.
This will also apply with the Characteristic function if an output value higher than the smallest physical value has been assigned to the smallest input value.

Commissioning

3.2.5 Parameter window A : Scenes

This parameter window is shown if the corresponding function is enabled in Parameter window A: General, p. 14.
The function Scenes can be used for direct activation of certain predefined input values (as a percentage and depending on the output range). These output values are then used to output the associated output value (according to the characteristic, if applicable) at the output.

Note
Scene values are always affected by the characteristic.

General 4 Channel A	Overwrite scenes on download	Ye	\checkmark
A: General	Attention! Observe input form., upp./ low. limits. See ch. A or A: Charact.		
A: Scenes			
b Channel B			
D Channel C			
D Channel D	Assignment 1 to scene number (No. 1...64, $0=$ no assignment)	0	$\stackrel{\square}{\square}$
	Assignment 1 input value in \% [0... 100]	0	$\stackrel{\square}{\square}$
	Assignment 2 to scene number (No. 1...64, $0=$ no assignment)	0	\square
	Assignment 2 input value in \% [0...100]	0	\square
	Assignment 3 to scene number (No. 1...64, $0=$ no assignment)	0	\square
	Assignment 3 input value in \% [0...100]	0	$\stackrel{4}{\square}$
	Assignment 4 to scene number (No. 1...64, $0=$ no assignment)	0	\square
	Assignment 4 input value in \% [0...100]	0	\square
	Assignment 5 to scene number (No. 1...64, $0=$ no assignment)	0	\square
	Assignment 5 input value in \% [0... 100]	0	\square

Overwrite scenes on download

Options: $\frac{\mathrm{Yes}}{\mathrm{NO}}$
No
This parameter specifies whether the scenes should be overwritten as well after a device download.

Attention! Observe input form., upp./ low. limits. See ch. A or A: Charact.
<--- Note

Commissioning

Assignment X to scene number

(No. 1...64, $0=$ no assignment)
Options: $\underline{0}$... 64
This parameter specifies which scene number (1...64) assignment $\mathrm{X}(\mathrm{X}=1 . . .16)$ is assigned to.

Note

If a scene assignment is duplicated, the first assignment in the assignment table is output (in ascending order).

Assignment X input value in \% [0...100]

Options: \quad.... 100
This parameter specifies the input value that the system should approach when scene $X(X=1 \ldots 16)$ is switched on. The setting is $0 \ldots .100 \%$ of the input range, depending on the upper and lower limits selected.
The scene value is written to the group object Status Actual value.

Important

The input format set in Parameter window A: General, p. 14, and the upper and lower limits must be observed. If a value outside this range is entered, it will automatically be limited to the nearest valid value.

3.2.6 Parameter window A : Forced operation

This parameter window is shown if the corresponding function was enabled in Parameter window A: General, p. 14.
The function Forced operation allows you to adopt a specific output value that overrides the input value, by sending a 1- or 2-bit command that applies predefined parameters. This output value can also be exited again only after withdrawal of the forced operation command.
The difference between 1 - and 2 bit-forced operations is that the latter allows you to assign two different values: one for the forced Off status, e.g. 0 V , and another for the forced On status, e.g. 10 V .
Forced operation 1 takes priority over forced operation 2. But both must be canceled in order to continue in normal mode.

Attention! Observe output range

<--- Note

[^8]
Use forced operation 1

Options: No
Forced operation objects, 1 bit; 0 active
Forced operation objects, 1 bit; 1 active
Forced operation objects, 2 bits
Linked group object: Forced operation 1, 1 bit
Forced operation 1, 2 bits
Depending on the selected type of forced operation, activating forced operation enables the corresponding parameters below for setting a forced operation.
Selection of option Forced operation objects, 1 bit:

Output value with forced operat. 1
in \% of output range [0...100]
Options: $\underline{0} . . .100$
This parameter specifies the output value when forced operation 1 is activated.
Selection of option Forced operation objects, 2 bits:

Output value with forced operat. 1 ON
in \% of output range [0...100]
Options: $\underline{0}$... 100
This parameter specifies the output value when forced operation 1 ON is activated.

Output value with forced operat. 1 OFF
in \% of output range [0...100]
Options: $\underline{0} . .100$
This parameter specifies the output value when forced operation 1 OFF is activated.

Use forced operation 2

Options: No
Forced operation objects, 1 bit; 0 active
Forced operation objects, 1 bit; 1 active Forced operation objects, 2 bits

Linked group object: Forced operation 2, 1 bit Forced operation 2, 2 bits

Depending on the selected type of forced operation, activating forced operation enables the corresponding parameters below for setting a forced operation.
Selection of option Forced operation objects, 1 bit:

Output value with forced operat. 2
in \% of output range [0...100]
Options: $\underline{0}$... 100
This parameter specifies the output value when forced operation 2 is activated.
Selection of option Forced operation objects, 2 bits:

Output value with forced operat. 2 ON
in \% of output range [0...100]
Options: $\underline{0}$... 100
This parameter specifies the output value when forced operation 2 ON is activated.

Output value with forced operat. 2 OFF
in \% of output range [0...100]
Options:
This parameter specifies the output value when forced operation 2 OFF is activated.

```
Note
The reaction and parameters of forced operation 2 are identical to those for forced operation 1 . However, forced operation 1 takes priority.
```


Commissioning

Output value after cancellation of
forced operation
Options: Value before forced operation
Current input value
Retain forced operation value
This parameter determines the reaction when forced operation is canceled. This will apply once there is no longer an active forced operation.
Note
The specified reaction applies to forced operations 1 and 2.

- Value before forced operation: The last value received before forced operation applies. In the interim the input object accepts no new input values, but sends an acknowledgment telegram anyway. Once forced operation has been deactivated, the last value before activating forced operation applies, and the input object starts accepting new values again.
- Current input value: The value received during or before forced operation is retained until a new input value is received. During forced operation, the input object can still be written. Once forced operation is canceled, the existing value in the input object applies.
- Retain forced operation value: The value activated by forced operation is retained. Once a new input value is received, it is activated.

Priorities

Commissioning

3.3 Group objects

3.3.1 Summary of group objects

Note
The overview includes the group objects for the 4-fold Analogue Actuator 01536.

Commissioning

Commissioning

3.3.2 Input objects

3.3.2.1 Group objects General

No.	Function	Object name	Data type	Flags
0	Request status values	General	1 bit DPT 1.017	C, W, U

This parameter is enabled if the parameter Enable group object "Request status values" 1 bit in Parameter window General, p. 11, is set to Yes.
If this group object receives a telegram with the value $x(x=0 / 1 / 0$ or 1), all group objects Status are sent on the bus, provided that the parameter Send status values in Parameter window A: General, p. 14, is set to On change or After a change or request or Cyclically and on change.
Option $\mathrm{x}=1$ produces the following function:
Telegram value: $\quad 1=$ All status messages are sent
$0=$ No reaction

3.3.2.2 Group objects Channel A

No.	Function	Object name	Data type	Flags
12	Input value	Channel A	Variable DPT variable	C, W, U

This group object is enabled if there is an output type set in Parameter window A: General, p. 14. This then allows you to set the input format. The following values can be sent:

1-byte value [0...100] \%	DPT	5.001
1-byte value $[0 \ldots+255]$	DPT	5.005
1-byte value $[-128 \ldots+127]$	DPT	6.010
2-byte value $[0 \ldots+65,535]$	DPT	7.001
2-byte value $[-32,768 \ldots+32,767]$	DPT	8.001
2-byte value (floating point)	DPT	$9.0 x x$
4-byte value (IEEE float. point)	DPT	$14.0 x x$

13	Switch	Channel A	1 bit DPT 1.001	C, R, T

This group object is enabled if the parameter Enable function Dimming in Parameter window A: General, p. 14, is set to Yes.
This group object switches the output on (100% or parameterized brightness value) or off. It can, for example, be linked with the 1-bit group object of a dimmer button.
If cyclical monitoring of the input value is active, the switching object is not monitored.

14	Dimming	Channel A	4 bits DPT 3.007	C, W

This group object is enabled if the parameter Enable function Dimming in Parameter window A: General, p. 14, is set to Yes.
This group object steplessly dims the output up or down, e.g. with a dimmer button. The dimming speed is adjustable.
Switch-on and switch-off is also possible via relative dimming.
If cyclical monitoring of the input value is active, the dimming object is not monitored.

15	Forced operation 1, 1 bit	Channel A	1 bit DPT 1.002	C, W, U

This group object is enabled if the parameter Enable function Forced operation in Parameter window A: General, p. 14, is set to Yes.
This group object allows you to adopt a specific output value that overrides the input values, by sending a 1- or 2-bit command that applies predefined parameters.
This output value can also be exited again only after withdrawal of the forced-operation command.
The difference between 1- and 2-bit forced operations is that the latter allows you to assign two different values: one for the forced Off status, e.g. 0 V , and another for the forced On status, e.g. 10 V .
Forced operation 1 takes priority over forced operation 2. But both must be canceled in order to continue in normal mode.

Commissioning

No.	Function	Object name	Data type	Flags
16	Forced operation 1, 2 bits	Channel A	2 bits DPT 2.001	C, W, U
See group object 15				
17	Forced operation 2, 1 bit	Channel A	$\begin{gathered} 1 \text { bit } \\ \text { DPT } 1.002 \end{gathered}$	C, W, U
See group object 15				
18	Forced operation 2, 2 bits	Channel A	2 bits DPT 2.001	C, W, U
See group object 15				
19	8-bit scene	Channel A	1 byte DPT 18.001	C, W, U

This group object is enabled if the parameter Enable function 8-bit scene in Parameter window A: General, p. 14, is set to Yes.
The function Scenes can be used for direct activation of certain predefined input values. These input values are then used to output the associated output value (according to the characteristic, if applicable) at the output.
The telegram contains the number of the addressed scene, as well as the information on whether the scene is to be recalled or if the current output value is to be re-assigned to the scene.
Telegram values (1 byte): MOSS SSSS

$$
\begin{aligned}
& \text { (MSB) (LSB) } \\
& \mathrm{M}: \quad 0=\text { Scene is recalled } \\
& \\
& \\
& \text { S: Scene is stored } \\
& \mathrm{S}: \quad \text { Scene number (} 1 \ldots 16: 00000000 \ldots 00001111 \text {) }
\end{aligned}
$$

KNX 8-bit telegram value		Heaning
Decimal	Hexadecimal	
00	00 h	
01	01 h	
02	02 h	
\ldots	\ldots	
15	Fh	
128	80 h	
129	81 h	
130	82 h	
\ldots	\ldots	
143	8 Fh	

Other numeric values do not affect the group objects.
3.3.2.3 Group objects Channel B, C and D

No.	Function	Object name	Data type	Flags
$32 \ldots 39$	See group objects $12 \ldots 29$	Channel B		
$52 \ldots 59$	See group objects $12 \ldots 29$	Channel C		
$72 \ldots 79$	See group objects $12 \ldots 29$	Channel D		

Commissioning

3.3.3 Output objects

3.3.3.1 Group objects General

No.	Function	Object name	Data type	Flags
1	In operation	General	1 bit DPT 1.002	C, R, T

This group object is enabled if the parameter Enable group object "In operation", 1 bit in Parameter window General, p. 11, is set to Yes and the dependent parameter Send is set to Value 0 or Value 1.
In order to regularly monitor the presence of the device on the KNX, a telegram In operation can be sent cyclically on the bus. As long as the group object is activated, it sends a telegram In operation.

Telegram value: \quad| $1=$ Send system in operation with option Value 1 |
| :--- |
| $0=$ Send system in operation with option Value 0 |

| 2 | Status Auxiliary voltage | General | 1 bit
 DPT 1.002 | C, R, T |
| :---: | :--- | :--- | :---: | :---: | :---: |

The status byte reflects the current status of channel A / B.

Different statuses are indicated here, e.g

- Status Channel A - forced operation active
- Status Channel B - fault at output

Bit sequence:
76543210
Bit 7: Not assigned Always 0
Bit 6: \quad Not assigned \quad Always 0
Bit 5: \quad Channel A: Forced operation
0 : Forced operation is not active (channel A)
1: Forced operation is active (channel A)
Bit 4: Channel A: Cyclical monitoring
0 : Cyclical monitoring is not active (channel A)
1: Cyclical monitoring is active (channel A)
Bit 3: \quad Channel A: Fault at output
0: No fault at output (channel A)
1: Fault at output (channel A)
Bit 2: Channel B: Forced operation
0 : Forced operation is not active (channel B)
1: Forced operation is active (channel B)
Bit 1: Channel B: Cyclical monitoring
0 : Cyclical monitoring is not active (channel B)
1: Cyclical monitoring is active (channel B)
Bit 0: \quad Channel B: Fault at output
O: No fault at output (channel B)
1: Fault at output (channel B)
For further information see: Value table of group object Status byte channel A/B, p. 37

Commissioning

No.		Fun		Object name	Data type	Flags
4	Status	channel C/D		General	Non DPT	C, R, T
The status byte reflects the current status of channel C/D. Different statuses are indicated here, e.g. - Status Channel C - forced operation active - Status Channel D - fault at output						
Bit seque			76543210			
	Bit 7:	Not assigned	Always 0			
	Bit 6:	Not assigned	Always 0			
	Bit 5:	Channel C: Fo	eration			
			0 : Forced o	(channel C)		
			1: Forced op	annel C)		
	Bit 4:	Channel C: Cy	nitoring			
			0 : Cyclical	e (channel C)		
			1: Cyclical	channel C)		
	Bit 3:	Channel C: Fa	tput			
			0: No fault			
			1: Fault at			
	Bit 2:	Channel D: Fo	eration			
			0: Forced op	(channel D)		
			1: Forced o	annel D)		
	Bit 1:	Channel D: Cy	monitoring			
			0 : Cyclical	e (channel D)		
			1: Cyclical	hannel D)		
	Bit 0:	Channel D: Fa	tput			
			0 : No fault			
			1: Fault at			
For further information see: Value table of group object Status byte channel C/D, p. 38						

3.3.3.2 Oggetti di comunicazione Canale A

No.	Function	Object name	Data type	Flags
10	Status Actual value	Channel A	Variable DPT variable	$\mathrm{C}, \mathrm{R}, \mathrm{T}$

This group object is always enabled if the parameter Type of output in Parameter window A: General, p. 14, is not deactivated.
It reflects the status of the output (output value) in the form of the user-selected input value format.
The following values can be sent:

1-byte value $[0 \ldots .100] \%$	DPT	5.001
1-byte value $[0 \ldots+255]$	DPT	5.005
1-byte value $[-128 \ldots+127]$	DPT	6.010
2-byte value $[0 . .+65,535]$	DPT	7.001
2-byte value $[-32,768 \ldots+32,767]$	DPT	8.001
2-byte value (floating point)	DPT	$9.0 x x$
4-byte value (IEEE float. point)	DPT	$14.0 x x$

11	Status Switch	Channel A	1 bit DPT 1.001	C, R, T

[^9]Commissioning

No.	Function	Object name	Data type	Flags
20	Alarm	Channel A	1 bit DPT 1.005	C, R, T

This group object is enabled unless the parameter Activate cyclical parameter in Parameter window A: General, p. 14, is set to No.
It shows whether the monitoring time for cyclical monitoring has expired and if the output has therefore been switched to the value set for this eventuality.
Telegram value: $\quad 0=$ Cyclical monitoring time has not been exceeded 1 = Cyclical monitoring time has been exceeded

21	Fault at output	Channel A	1 bit DPT 1.005	C, R, T

This group object is enabled unless the parameter Type of output in Parameter window A: General, p. 14, is deactivated.
It shows whether there is a fault at the output.
Telegram value: $0=$ No fault at output
1 = Errore all'uscita

22	Valore uscita tensione Fault at output	Channel A	2 bytes DPT 9.02x	C, R,T

This group object is enabled unless the parameter Type of output in Parameter window A: General, p. 14, is deactivated. Depending on the output type (voltage or current) the DPT is set accordingly: voltage, DPT 9.020/current, DPT 9.021. The group object contains the physical output value for the channel present at the output.
3.3.3.3 Group objects Channel B, C and D

No.	Function	Object name	Data type	Flags
$30 \ldots 31$	See group objects $10 \ldots 11$	Channel B	Channel B	
$40 \ldots 41$	See group objects $20 \ldots 21$	Channel C		
$50 \ldots 51$	See group objects $10 \ldots 11$	Channel C		
$60 \ldots 61$	See group objects $20 \ldots 21$	Channel D		
$70 \ldots . .71$	See group objects $10 \ldots 11$	Channel D		
$80 \ldots 81$	See group objects $20 \ldots 21$			

Appendix

A Appendix

A. 1 Scope of delivery

The device is supplied together with the following components. Please check the items received using the following list:

- 1 pcs. 01536 Analogue Actuator, 4-fold, MDRC
- 1 pcs. installation and operating instructions

Attention

Degree of protection IP54 can be guaranteed only if the supplied blanking plugs are used.
If the plugs are not used, condensation and/or water can penetrate the housing and damage the device.

Appendix

A. 2 Value table of group object Status byte channel A/B

Empty = Value 0

- = Value 1, applicable

Appendix

A． 3 Value table of group object Status byte channel C／D

N．bit		7	6	5	4	3	2	1	0	N．bit		7	6	5	4	3	2	1	0
		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{o}} \\ & \stackrel{.}{⿳ 亠 口 冋 口} \\ & \stackrel{y}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$				$\begin{array}{\|c} \\ 0 \end{array}$				$\begin{aligned} & \frac{0}{\tilde{y y}} \\ & \frac{2}{2} \\ & \frac{2}{\dot{\omega}} \end{aligned}$									
0	00									86	${ }_{5}^{56}$		－		－		－	－	
1	01								－	87	57		－		－		－	－	
2	02							－		88	58		－		－	－			
3 4	03						－	－	－	89	${ }^{59}$		－		－	－			－
5	05						－		－	91	5B		－		\bullet	\bullet		\bullet	－
6	06						－	－		92	5 C		－		－	－	－		
7	07						－	－	－	93	5D		\bullet		－	－	－		－
8	08					－				94	5 E		－		－	－	－	－	
9	09					－			－	95	5F		－		－	－	－	－	－
10	OA					－		－		96	60		－	－					
11	OB					\bullet		－	－	97	61		\bullet	－					－
12	0 C					－	－			98	62		－	－				－	
13	${ }_{0}^{\text {OD }}$					－	－		－	99	${ }_{6}^{63}$		－	\bullet				－	－
${ }^{15}$	OF					－	－	－	－	$\frac{101}{101}$	65		－	：			－		－
16	10				－					102	66		－	－			－	－	
17	11				－				－	103	67		－	－			－	－	－
18	12				－			－		104	68		－	－		－			
19	13				－			－	－	105	69		－	－		－			－
20	14				－		－			106	6 A		－	－		－		－	
－21	15				\bullet		－	－	－	107 108	${ }^{6 B}$		－	－		－	－	－	－
23	17				－		－	－	－	109	60		－	－		－	\bullet		－
24	18				－	－					${ }^{6 E}$		\bullet	－		－	－	－	
－25	19				－	：			－	111	${ }^{6 F}$		－	－	－	－	－	－	－
27	1 B				－	－		－	－	113	71		\bullet	－	，				－
28	${ }^{10}$				－	－	－			114	72		－	－	－			－	
29	1 D				－	－	－		－	$\underline{115}$	73		－	－	－			－	－
${ }^{30}$	1E				－	－	－	－		116	74		－	－	－		－		
31	1F				－	－	－	－	－	117	75		－	－	－		－		－
－32	20			－						$\frac{118}{119}$	${ }^{76}$		－	－	－		－	－	
34	22			－				－	－	120	78		！	－	－	－			－
35	23			－				－	－	121	79		－	－	－	－			－
36 37	24			－			－			$\frac{122}{123}$	7A		－	－	－	－		－	
38	26			－			－	－	－	${ }^{122}$	${ }_{7} 7$		－	－	－	\bullet	－		－
39	27			－			－	－	－	125	7 D		－	－	－	－	－		－
40	28			－		－				${ }^{126}$	7E		－	－	－	－	－	－	
42	${ }^{29}$			－		－		－	－	${ }^{1228}$	80	－	－	－			－	－	－
43	${ }^{28}$			－		－		－	－	129	81	－							－
44	2 C			－		\bullet	－			130	82	－						－	
46	2 L			\bullet		\bullet	－	－	－	$\frac{132}{}$	84	－					－	－	－
47	$2 F$			－		－	－	－	－	133	85	－					－		－
48 49	${ }^{30}$			－	－				－	$\stackrel{134}{135}$	86	－					－	－	
50	32			－	\bullet			－		$\frac{135}{}{ }^{136}$	88	\bullet				－	－	－	－
51	33			－	－			－	－	137	89	－				－			－
52	34			－	－		－			138	8A	－				－		－	
53	35			－	－		－		－	139	${ }^{88}$	－				－		－	－
54	36 37			－	－		－	－		140	${ }_{80}^{80}$	\bullet				－	－		
56	38			－	－	－				142	8 E	－				－	\bullet	－	
57	39			－	－	－			－	143	8F	－				－	\bullet	－	－
－58	3A			－	－	－		－		144	90	－			－				
59	${ }^{38}$			－	－	－		－	－	145	91	－			－				－
61	$3{ }^{3}$			－	－	\bullet	\bullet		－	${ }^{147}$	${ }_{93}$	－			－			－	－
62	3E			－	－	－	－	－		148	94	－			－		－		
63	3F			－	－	－	－	－	－	149	95	－			－		－		－
$\underline{64}$	${ }_{4}^{40}$		\bullet						－	$\frac{150}{151}$	${ }_{96}^{96}$	－			－		－	－	
66	42		\bullet					－		$\frac{152}{}$	98	－			\bullet	－	－	－	－
67	43		－					－	－	153	99	－			－	－			－
68 69	44		\bullet				\bullet		－	$\frac{154}{155}$	${ }_{9}^{9 A}$	－			－	－		－	
70	46		\bullet				\bullet	－		156	9 C	－			－	－	－		－
71	47		－				－	－	－	157	9 D	－			－	－	－		－
72 73	48		－			－				$\stackrel{158}{159}$	$9 E$	－			－	－	－	－	
74	49		－			－			－	${ }^{159}$	A	－		－	－	－	－	－	－
75	4B		\bullet			，		－	－	161	A1	－		－					－
76	4 C		－			－	－			162	A2	－		－				－	
78	4 D		－			－	－		－	163	A3	－		－				－	－
79	4 F		\bullet			\bullet	\bullet	－	－	165	A5	\bullet		\bullet			\bullet		－
80	50		－		－					166	A6	－		－			－	－	
81	51		－		－				－	167	A7	－		－			－	－	－
82 83	${ }_{5}^{52}$		－		－			－		168 169	A8	－		－		－			
84	54		－		－		－			170	AA	\bullet		\bullet		\bullet		－	
85	55		－		－		－		－	171	AB	－		－		－		\bullet	－

[^0]: Note
 Analogue Actuator AA/S requires an external 100... 240 V AC $50 / 60 \mathrm{~Hz}$ power supply.

[^1]: Note
 ETS and the current version of the device application are required for programming.
 The current application and corresponding software information can be downloaded at Vimar site.
 The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed.

[^2]: Note
 For the LEDs to function, the device must be ready for operation.

[^3]: Options: Deactivated
 $0 . .1 \mathrm{~V}$
 $0 . . .5 \mathrm{~V}$
 $0 . . .10 \mathrm{~V}$
 $1 . .10 \mathrm{~V}$
 $0 . . .20 \mathrm{~mA}$
 4... 20 mA

 ## Linked group object: Input value
 Status Actual value

 This parameter defines the output type (current/voltage with upper and lower limits) or deactivates the output.

[^4]: Note
 This setting is made in the parameter window General for all channels, i.e. if the parameter Enable group object "Request status values" 1 bit is set to Yes, then only the two status bytes are sent.
 If the channel's parameter Send status values is set to the option After a change or request, then the channel status (output value) is also sent when a request (or change) occurs.
 If the internal value that corresponds to the output value changes due to an external value change, a forced operation or a scene recall, this constitutes a change.

[^5]: Note
 If the characteristic is in use, its maximum input and output values apply as limits at the same time. If you enter a higher value, this will automatically be limited to the nearest valid value.
 As shown by the example on input value sorting, the characteristic ends at $90 \% ; 1.75 \mathrm{~V}$. So if an input value of 100% is sent to the device, it is limited to the nearest valid value (1.75 V). If a different reaction is required, the characteristic must be defined for the whole input range (in this case $0 \%-100 \%$).
 These limits also apply when using scenes.

[^6]: Note
 If you create your own characteristic, the percentages entered for Reaction on bus voltage recovery and Scenes must always be considered for the whole range of the selected input format.

[^7]: Note
 After a device download, the upper dimming limit is used as the last brightness value.

[^8]: Note
 The output type set in Parameter window A: General (see p. 14) must be observed..

[^9]: This group object is enabled if the parameter Enable function Dimming in Parameter window A: General, p. 14, is set to Yes.
 For the group object to be sent, the parameter Send status values in Parameter window A: General, p. 14, must be set to On change.
 It shows whether the input value has a higher value than the lowest threshold in the defined input range. The value is set to "On" (1) if a new value is written via the group object Input value, or if the output is switched on using the object Dimming, or if the output is switched on using the object Switch.

